Search results for "Porcine Model"
showing 5 items of 5 documents
Nanofibrillar scaffold resists to bile and urine action: experiences in pigs
2020
Biomaterial-based-scaffolds’ functions are to replace anatomical and functional features loss of an injured tissue. They can replace native tissue after their reabsorption. Material and methods. In our experimental procedures we utilized the PHEA-PLA+PCL scaffold in 2 female pigs to assess its resistance to bile and urine. Results. Both pigs survived to surgical procedures. After a month fibres appeared unchanged in term of form and dimension at electronic microscopy. Cells and ECM factors were founded inside the scaffold in a microscopical evaluation. Conclusion. Planar and tubular scaffolds were colonized by cells and extracellular matrix elements. The study conducted on pig suggested tha…
Porcine Model for Deep Superior Epigastric Artery Perforator Flap Harvesting: Anatomy and Technique
2018
BACKGROUND Microsurgical training on rats before starting with clinical practice is a well-established routine. Animal model training is less widespread for perforator flaps, although these flaps represent a technical challenge. Unlike other flaps, they require specific technical skills that need to be adequately trained on a living model 1 : a cadaver is not enough because no bleeding, vessel damage, or vasospasm can be simulated. 2 The purpose of this study was to assess the suitability of the porcine abdomen as a training model for the deep inferior epigastric artery perforator (DIEAP) flap, commonly used in human breast reconstruction. METHODS A female swine (Sus scrofa domesticus, ssp;…
Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model
2012
Introduction Cyclic alveolar recruitment/derecruitment (R/D) is an important mechanism of ventilator-associated lung injury. In experimental models this process can be measured with high temporal resolution by detection of respiratory-dependent oscillations of the paO2 (ΔpaO2). A previous study showed that end-expiratory collapse can be prevented by an increased respiratory rate in saline-lavaged rabbits. The current study compares the effects of increased positive end-expiratory pressure (PEEP) versus an individually titrated respiratory rate (RRind) on intra-tidal amplitude of Δ paO2 and on average paO2 in saline-lavaged pigs. Methods Acute lung injury was induced by bronchoalveolar lavag…
Porcine Model for Internal Mammary Vessels Harvesting
2018
Recipient vessels selection is crucial for successful microsurgical breast reconstruction. The internal mammary vessels (IMVs) have gained great popularity, and they are often selected as first choice recipient vessels. The IMVs can be exposed for microvascular anastomosis through a rib-removing (trans-costal) or a rib-sparing (intercostal) approach.1–3 Because the vessels are located between the rib cage and the parietal pleura, adequate training is needed to avoid and eventually manage bleedings and pleural perforation. This training is better performed in a nonhuman model. Our aim was to investigate the pig as a surgical model for IMVs harvesting to be used in training.
Porcine Model for Gluteal Artery Perforator Flap: Anatomy and Technique
2018
Although flap anatomy is well studied on cadavers and microsurgical techniques are well practiced on rats, still there are few training models for learning the techniques of perforator flap harvesting. The cadaver has no bloodstream, so accuracy of dissection cannot be evaluated and flap viability cannot be verified. Training on humans carries a high risk of flap damage. A living model for perforator flap harvest is needed to learn the technique before starting with its clinical application.